Naming Ionic Compounds

•ionic compounds are predominately metals bonded to nonmetals
•elements are monatomic ions (single atom ions)
Polyatomic ion- an ion made up of many atoms
•compounds which result from the union of a metal and a nonmetal
are binary compounds.
•ionic compounds can also include polyatomic ions.

Rules for naming ionic compounds:

1. Write cation (positive ion) first.

2. Write anion (negative ion) second.

3. Drop the usual ending (-ine, -iun, -ogen, etc.) and replace with -ide

Ex: Li2O => lithium oxide NaF => so	odium fluc	oride
Criss/cross method	Br	-2 0-2
1. Write symbols and charges of elements		Br LizO
2. Switch charges and drop (+) and (-)	(a+2 (al	Br CaO
3. Rewrite with charges now as subscripts	ZntaZnt	Br ZnO
4. Keduce charges (ex. Ca2Br2 => CaBr) -	A1+3 A12	B_{r_3} Al_2O_3

Naming Covalent Compounds

Covalent bonds are predominately between two non-metals.
The main basis for naming covalent compounds is prefixes to represent subscripts

Rules for naming covalent compounds:

1. Place most electronegative element last

2. Use a prefix for the first element in a formula, but only if the subscript is greater than 1

3. Always used prefix with the second element by combining the root name and ending -ide

Ex: P2O5 => diphosphate pentoxide CO2 => carbon dioxide *when writing formulas, the net charge of an ionic solid is zero (neutral)

NUMBER	PREFIX	example
1	NONE	CHLORIDE
5	D!-	DICHLORIDE
3	TRI-	TRICHLORIDE
ų	TETRA-	TETRACHLORIDE
5	Penta-	PENTACHLORIDE
6	Hexa-	HEXACHLORIDE
7	Hepta-	HEPTACHLORIDE
8	OCTA-	OCTACHLORIDE
P	NONA-	NONACHLORIDE
10	DECA-	DECACHLORIDE

Naming Multivalent Metals (metals with 2 charges) Rules for 2 oxidation states (charges): 1. Use Roman Numerals to represent ion charges •Cul => copper+1 Cull=> copper+2 2. Use Latin Root. Add -ous to lower charge ion and add -ic to higher charge ion. Cu=cuprum Cuprous=Cu+1 Cupric = Cu+2Naming Acids (ionically bonded) Acids always start with H 1. Binary Acids- Acid composed of Hydrogen and another element. •to name, take hydro + the root of the bonded element + -ic + acid EX: HCI = hydro chloric acid 2. Oxy-acids- Acid composed of Hydrogen and a polyatomic ion including Oxygen. •to name, take the root of the polyatomic ion + -ic (for -ate ions) or ous (for -ite ions) + acid EX: HNO2 = Nitric acid

Mass Relationships

A.m.u- atomíc mass unit

•this is the mass of one atom

•1H atom ís 1 a.m.u.

1 a.m.u.

Molecular mass- added masses of all atoms in a compound.

$A_{g}NO_{3} = A_{q} = 108$
N = + 14
O = + 16X3
170 amu

One mole = 6.02×10^{23}

Molar mass- the mass of one 6.02x10^23 of an element or compound. •the only difference between molar mass and molecular mass is the unit. •molecular mass is labeled as a.m.u whereas molar mass is in g/mole.

lcu= 63.5 amu I mole Cu = 63.5 g/mole

Grams (moles (.ogx1023 particles

6.02 x [0²³

		Percent Comp	position for
Percent compositio	n		
•this is the perc	ent, by mass, of	O 2 Hydrogen	$15.994 = 15.9994 \\ 1.008 = 2.016 \\$
each element in a c	ompound.	H Water	= 18.0154
		$\%$ Oxygen = $\frac{Pa}{P}$	art O = x 100
Mass of element	X 100	,	Fotal
Mass of compound	-	$\%$ Oxygen = $\frac{15}{18}$	$\frac{.9994}{0154} \times 100$
Formula)	% Oxygen = 88	.8%
Empirical Formul	a		
•the formula formula	or a compound the	at represents the	e simplest ratio
of elements to ea	ich other.		
Steps:			
1. Convert pe	rcent to grams		
2. Convert gr	ams to moles (mo	lar mass)	
3. Find the sr	nallest whole num	ber ratio (by div	iding all molar
masses by the sr	nallest molar mas	s. This is so we	do not have
any ratios less th	an 1)		
	,		
*Empirical Formu	las are the simplif	ied versions of I	molecular
formulas	•		
Given	Find		
Mass %	Empirical	vvnat is an Empli	rical Formula
elements	formula	and now do v Renzene	we use it!
4	1	н	
Assume	Calculate	H H	Acetylene
sample	mole ratio	H H	-с=с-н
	1	C ₆ H ₆ C ₂	2 H2
Grams of Use	Moles of	S CH	
each element atomi weigh	c each element	Sat	

WOIECL	iidi i O	annula				
•Molecu	lar formu	ıla ís a cor	npounds	real formi	ıla, as oppose	ed to
a compoun	ds empiri	cal formu	la, which	is its sim	plest ratio.	
Steps:						
1. Com 2. Fína 3. Díví empírical n	Vert percen d the mass de the mol nass	nt to empir s of the em lecular ma	ícal form pírícal fo Iss (whích	ula (steps rmula (en will be gi	on previous npirical mas ven) by the	page s)
4. Mul	típly all s	subscripts	ín the em	pirical for	mula by the	ratio
found in s	tep 3		_	, ,	.	
4				H	ΗH	
$E_{X}: \frac{4}{1} = 4$	(NH ₂)	$P_4 = N_4 P_4$	8	н н—С—н н СН ₄	H H H C C C H H H H H C H C H ₆	
$E_{X}: \frac{4}{1} = 4$		$P_4 = N_4 P_4$	8	H−C−H H−C−H H CH₄	H H H C C C H H H H H H H H H H H H H H	
$E_{X}: \frac{4}{1} = 4$		$P_4 = N_4 P_4$	8	H-C-H H CH4	H H H C C H H H H H H H H H H H H H H H	
$E_{X}: \frac{4}{1} = 4$		$P_4 = N_4 P_4$	8	н н сн 4	H H H C C H H H H H H H H H H H H H H H	
$E_{X}: \frac{4}{1} = 4$		$P_4 = N_4 P_4$	8	H H H H H H H H H H H H H H H H H H H	H H H C C H H H H H H H H H H H H H H H	
$E_{X}: \frac{4}{1} = 4$			8			
$E_{X}: \frac{4}{1} = 4$			8			
$E_X: \frac{4}{1} = 4$			8			
			8			
			8			
			8			